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ABSTRACT

The Galerkin weighted residual technique using linear tri-

angular weight functions is employed to develop finite differ-

ence formula in cartesian coordinates for the Lap]acian

operator, first derivative operators and the function for

unstructured triangular grids. The weighted residual coeffici-

ents associated with the weak formulation of the Laplacian

operator are shown to agree with the Taylor series approach on

a global average. In addition, a simple algorithm is presented
to determine the Voronoi (finite difference) area for an

unstructured grid.

INTRODUCTION

In developing unstructured finite difference equations,

Jameson If, Eq. (4.]0)] has applied the standard weighted

residual Galerkin method to obtain a time dependent discretiza-

tion of the Euler equations for an unstructured triangular
mesh. Erlebacher [2] has utilized variational methods on a

pointwise basis to establish a difference operator for the

Laplacian operator for a central difference cell similar to

that shown in Fig. I. The present paper will utilize the

global Galerkin weighted residual technique to also generate
slmp]e closed form finite difference approximations for the

Laplaclan operator, first derivative operators, and the func-

tlon itself for the general central cell in Fig. l, as well as

the boundary element cell also shown in Fig. I. The boundary

element cells are required in acoustics and electromagnetic

theory in establishing the far field radiation conditions.

GALERKIN WEIGHTED RESIDUAL FORMULATION

Consider the following partial derivatives:
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¢ is a scaler or potentlal quantity and the 6's are variable
property coefficients. To obtain the finite difference expres-
slons for the terms in Eq. (I), the continuous domain D is
first divided into discrete triangular areas Ae staked out by
nodal (grid) points P as shown in Fig. I. The number of con-
nected areas (called a cell) needed to define the difference

equation for node o is labeled M.
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The difference equations developed in Appendices A and B
take on the form

(62s$/sx)

(13365/6Y)

(645)

= kodPO + kl¢ 1 + k2¢ 2 + ... + kn¢ n + ... + kp4pp

(2)

_ [-9W i • 619 _] dA = _o¢o + c_i¢I + =2¢2 + ... +=p¢p
AT

(3)

where the Laplaclan operator is converted to the later form by
means of the weak formulation [3, p. 443] of the weighted
residual approach. The values of the coefficients k and
depend only on the location of the grid points and the proper-
ties 6 The superscript • represents either the derivative
in x (* = x) or y (* = y) and the variable itself (* = ¢)
The coefficients k* for ¢ and its first derivatives are
included in Appendix C.
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The major effort of the present work is to establish the
relationship between the Laplacian operator and the _ coeffi-
cients from the method of weighted residuals. An expression
for the Laplacian of the form

V2¢ = f(_l, a2 .... ) (4)

is desired. Using the result from Appendix D for a linear
shape function, the Laplacian can be expressed as

V2¢ : _0¢° + _I¢I + _2¢2 + "'" + _PCP + r

AT

3

(5)

where AT is the total area of the cell. The _ values in

Eq. (5) are given as

an = -[B(nm)/4Anm][lyn_ - Yn)lYo - Yn_) + _x n - Xn_)IXn_ - Xol ]

x _I- 6n,P_M)- [IS(n)/4An] [CYn- Yn+)<Yn+ - Yo) + _Xn+- Xn)

x IXo- Xn+)]ll - 6p+l_n,P_Ml (6)

M

_o = __--_ [B (e)

e:1

/4Ae][lYe - Ye+l 2 + _Xe+ - Xe)2 ] (7)

£ : 3 IS(1)V¢ • n bc T + A_T I_(M)9¢ • n bc T 6M,P-I

(8)

where the subscripts are defined in Appendlx C. The term E
Is the contribution from the natural boundary condition that
comes automatlcally from the weak formulatlon of the method of
weighted residuals and contributes only on the boundary of the
domain.

DISCUSSION OF RESULTS

Uniform Grids

For the conventional six-point hexagon difference grid as
shown in Fig. 2, the difference equations for the Laplacian,
first derivatives, and the function as calculated from Eqs. (2)
and (5) are in agreement with the standard difference operators
that appear in the literature [4, p. II14]. Similarly, the



very popular six-node system shown in Fig. 3 also shows agree-
ment. For brevity only the Laplacian operator will be shown in
Fig. 3 and on the remaining figures.

As is well known in the literature [3, p. 105], the method
of weighted residual and the conventional Taylor series expan-
sion often yield different results. For the conventional four-
point square difference grld as shown in part A of Flg. 4, the
difference equation for the Laplacian Is d|fferent by a factor
of 3/2 from the conventional Taylor series representation of

the Laplacian operator [4, p. Ill4]. Similarly, the eight-node

system shown in part B of Fig. 4 differs by a factor of 3/4.

However, since the method of weighted residual (finite element

theory) is guaranteed to converge, these are acceptable formu-

lae provided they are applied to a consistent global mesh and

not a single arbitrary cell.

Relationship Between FE and FD Methods

For uniform grids, of the type displayed in Figs. 2 to 4,

the finite difference and finite element expressions for the

Laplacian operator will be in agreement with the conventional

Taylor series difference equation provided that the bias con-
stant B, defined by the following area rule, is identical to

zero.
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FIGURE 4. - GLOBAL CONVERGENCE EXAMPLE WITH RECTANGULAR ELER£NTS.

B = 3Av/A T - l (9)

Av is the Voronoi neighborhood [4] or the area normally
employed in the finite difference analysis. If B _ O, the
coefficient in front of the finite element expression will dif-

fer from the expression for the Taylor series expression by a
factor of I + B. If B = O, a single pattern of uniform ele-

ments can normally be placed in a regular domain.

Global Relation To Taylor Series

Although the difference equations for the Laplacian opera-

tor in Fig. 4 differ in each cell from the standard Taylor

series difference equation, on a global average the Taylor

series and finite element equation will average out to the same

value. In this case the area average of the eight-node ele-
ment combined with the four-node element will be such that the

Taylor series will be valid. As shown in Fig. 4, the average

global value of B is equal to zero. (B is a measure of the

difference between the finite element and Taylor series as just

defined.) A similar situation occurs for triangular grids,
although the results are not shown.

Nonuniform Grids

Figure 5 displays the difference equations for a nonuni-

form five-node cell. The Laplaclan operator shown in Fig. 5

is only valid when taken in conjunction with the other grid

systems that surround it in a given domain. It is not to be

thought of as a Taylor series approximation for the cell shown

in Fig. 5.
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Voronoi (Finite Difference) Area

The determination of the Voronoi area plays a major role
in the mesh generation by triangulation of arbitrary points
[2]. The coefficients used to generate the Laplacian operator
can also be used to easily determine the Voronoi area without
geometric construction;

AV: 4 * 4 + 4 * "'"

+ 4
(lO)

where _'s are given by Eqs. (6) and (7). The rationale for

development of this simple algorithm to predict the Voronoi

area comes from the fact that replacing AT/3 by Av in

Eq. (5) fortuitously satisfies the Taylor series approximation

for uniform grids. (However, it does not |n general for non-

Av when B = 0.) Therefore, If ¢uniform grids, and AT/
is assumed to vary as x + y2]/4 then the Laplacian for uni-

form grids will have a value of unity and Eq. (lO) results.

To validate this hypothesis, Eq. (lO) was checked against the

nonuniform cell shown in Fig. 6, as well as a large variety of

other nonuniform cells, and found to always be in exact agree-

ment with geometrical calculations. For certain complex cells,

the Voronoi boundaries can cross as shown in Fig. 6. In these

cases, the algorithm will consider reversed areas as negative,

in that it senses the direction of the path of the Voronoi

region. Again the algorithm agrees with the geometric
calculation.
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Local Convergence

If B = O, Eq. (5) combined with Eq. (9) for central cells
yields

_2¢ = (o_0¢0 + _i¢i + _2¢2 + ... + _pCp)/Av (ll)

where Av is the Voronoi area of the cell and the m values
are given in Eqs. (6) and (7). Equation (ll) was checked

against a number of nonuniform grids (six or less nodes) where

B _ 0 and found to satisfy the test functions l, x, y, x2
and _2. However, the test function xy was not satisfied'

when B _ O. For the special case, as shown in Fig. 5, where

B ~ O, Eq. (ll) nearly satisfied the xy function test.

Therefore, Eq. (ll) may be valid on a pointwise bases for the

special condition of B = O. More testing will be required
for va]idat_on.

CONCLUSIONS

The Galerkin weighted residual technique using linear

triangular weight functions is employed to develop finite dif-

ference formulae in cartesian coordinates for the Laplacian

operator, first derivative operators and the function for

unstructured triangular grids.
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APPENDIX A - DERIVATION GALERKIN WEIGHTED RESIDUAL EQUATIONS

In accordance wlth the method of weighted residuals,

weight functions Wo in the form of a linear pyramid are
introduced (one for each grid point), such that the integra-

tion of the product of each term in Eq. (1) times the weight

Wo over the cell area shown in Fig. l yields

Xf ' XI
e=l Ae

AT

[_,, (e) }]-v,,o , [v(e_] {¢(e)
dA

(Al)

e=l A

AT e

(A2)

where the subscript x stands for the x derivatives of the

known shape functions and N stands for the linear interpola-

tion functions whose x and y dependence is presented in

most finite element texts [3, p. Ill, Eq. (3.1.4)]. The equa-

tions for the derivative of ¢ with respect to y and the

function itself are similar to Eq. (A2). The Laplacian opera-

tor in Eq. (AI) has utilized the weak formulation of the

weighted residual formulation [3, p. 443].

APPENDIX B - AVERAGED OPERATORS

Assuming averaged finite difference values over the
weighting function area allows the function and first deriva-

tives to be written explicitly. For example,



' 1
e=l A

e

(BI)

In this case, the integral of the weight Wo over the

cell area is equal to AT/3, which was determined with the aid
of the standard area integration formula [3, p. ll2]. Equa-

tion (BI) as well as the equation for the Laplacian, the func-

tion and the derivative of the function with respect to y

can now be easily evaluated using conventional finite element

theory to obtain the difference equations given in Appendix C

and Eqs. (6) and (7) in the body of the report.

APPENDIX C - COEFFICIENTS FOR FUNCTION AND FIRST DERIVATIVES

To develop the difference equations, the Kronecker delta
is defined as

6c,p = O, _ _ p: or 6_,p = l, _ = _ (Cl)

and the following circular indices are also defined

n- = n - 1 + P6n l (C2)

n+ = n + I - P6n, P (C3)

e+ = e + l - M6e, P (C4)

nm= n - l + M6n, l (C5)

with

Ae = [I12] xo(Yj - Yk) + [I12] xj(y k - yo ) + [I/2] xk(Yo - yj)

(C6)

[3, p. 110, Eq. (3.1.2)]. Using this notation, the coeffici-

ents for the following operators can be written as follows:

x derivative operators

+ [13_n)/2AT](Yn+ - Yo)( l - 6p+l_n,p_M) (C7)

M

e=l

9



y derivative operators
]

KY = [B_Rm)/2AT](XR_- Xo)(1- 6n,P_M)

+ (B_n)/2AT)IXo - Xn+)[l- 6p+l_n,P_M] (C9)

M

kY = _ IF&_3)/2ATI[Xe+- Xe]
(ClO)

¢ functlon

ken = [B(4nm){Anm/4AT)]<] - 6n,P-M)

+ IB_ n) IAn/4AT)]{I- 6p+l_n,P_M) (Cll)

M

ko@: (I/2 AT ) _-_ ^(e)Ael_4
e=l

(C12)

APPENDIX D - SOLUTION OF THE WEIGHTED RESIDUAL EQUATIONS

Consider the partial differential equation of the form

92¢ + 6@ = 0 (DI)
6x

Employing the weak solution [3, p. 443] for the four-node cell

in part A of Fig. 4 yields

(¢I + ¢2 + ¢3 + ¢4 - 4¢0) + hi(el - ¢3 )/3] : 0 (D2)

To put Eq. (D2) in a more familiar form which coincides with

the standard Taylor series finite difference approach, Eq. (D2)
Is multlplled by 3/A T, which corresponds to 3/2h L for the

geometry shown In Fig. 4. Thus, Eq. (D2) becomes

312 [(¢I + ¢2 + ¢3 + ¢4 - 4¢o)/h2] + (¢I - ¢3 )/2h = 0 (D3)

The 3/A T term was chosen as the multiplying constant because

it will always convert the function and its first derivatives

so that they match the Taylor series expression. Consequently,

the AT/3 term appears in Eq. (5) in the body of this report.

lO
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